Non-Profit Trusted Source of Non-Commercial Health Information
The Original Voice of the American Academy of Anti-Aging, Preventative, and Regenerative Medicine
logo logo
Genetic Research Behavior Diet Lifestyle

Researchers Identify a Potential Target for Reversing Poor Metabolic Traits

3 months, 3 weeks ago

3374  0
Posted on Jan 01, 2024, 3 p.m.

Key Takeaways:

  • A common genetic variant promotes reductive stress in the liver, leading to activation of a transcription factor
  • This transcription factor in turn alters gene expression to cause undesirable metabolic traits
  • Targeting this pathway is likely to have numerous beneficial metabolic effects

During oxidative stress, excess production of reactive oxygen species (ROS) causes cell and tissue damage.

Reductive stress is the counterpart of oxidative stress and occurs when cells build up too much of a molecule called NADH (nicotinamide adenine dinucleotide + hydrogen), which plays a role in energy production.

New research led by scientists at Massachusetts General Hospital (MGH), a founding member of the Mass General Brigham healthcare system, indicates that reductive stress causes changes in the liver and circulation, resulting in poor metabolic traits that can contribute to obesity and fatty liver disease.

The work, which is published in Cell Metabolism, was initiated because a common genetic variant in the GCKR gene, which encodes glucokinase regulatory protein, influences many different aspects of metabolism in humans, but the mechanisms involved are unclear.

Glucokinase regulatory protein is predominantly expressed in the liver and controls the activity of an enzyme involved in sensing, storing, and metabolizing glucose.

Experiments revealed that the common variant in GCKR promotes reductive stress in the liver. The researchers discovered that reductive stress (high NADH) promoted by the GCKR variant activates ChREBP, which a transcriptional factor, or a protein that controls the expression of various genes.

The activated ChREBP then proceeds to alter gene expression in the liver to cause numerous undesirable metabolic traits, including elevated fat levels in the liver and blood.

The investigators also found that consumption of large amounts of unhealthy foods or alcohol also likely promotes reductive stress in the liver to trigger this cascade of events. On the other hand, weight loss surgery appears to inhibit this pathway.

“Our work implicates an NADH-ChREBP axis in mediating bad metabolic traits seen in human genetics, obesity, and alcohol and non-alcohol fatty liver disease,” says senior author Russell Goodman, MD, DPhil, a physician scientist in the Gastroenterology Division and Endocrine Unit at MGH.

“The research suggests that trying to lower NADH levels is likely to have beneficial metabolic effects in a variety of human diseases.”

Additional authors include Charandeep Singh, Byungchang Jin, Nirajan Shrestha, Andrew L. Markhard, Apekshya Panda, Sarah E. Calvo, Amy Deik, Xingxiu Pan, Austin L. Zuckerman, Amel Ben Saad, Kathleen Corey, Julia Sjoquist, Stephanie Osganian, Roya AminiTabrizi, Eugene P. Rhee, Hardik Shah, Olga Goldberger, Alan C. Mullen, Valentin Cracan, Clary B. Clish, and Vamsi K. Mootha.

Support for this study was provided by the National Institutes of Health, the American Association for the Study of Liver Disease (AASLD), and a Burroughs-Wellcome, Longevity Impetus, and the Marriott Foundation.

As with anything you read on the internet, this article should not be construed as medical advice; please talk to your doctor or primary care provider before changing your wellness routine. This article is not intended to provide a medical diagnosis, recommendation, treatment, or endorsement. These statements have not been evaluated by the Food and Drug Administration. 

Content may be edited for style and length.

References/Sources/Materials provided by:

This article was written by Brandon Chase at Massachusetts General Hospital 

bchase7@mgb.org

https://www.massgeneral.org/

https://www.massgeneral.org/news/press-release/reductive-stress-metabolic-disorders

https://doi.org/10.1016/j.cmet.2023.11.010

WorldHealth Videos