Non-Profit Trusted Source of Non-Commercial Health Information
The Original Voice of the American Academy of Anti-Aging, Preventative, and Regenerative Medicine
logo logo
Cellular Reprogramming Mitochondria

Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle

18 years, 3 months ago

10535  0
Posted on Jan 09, 2006, 7 a.m. By Bill Freeman

The mitochondrial theory of ageing proposes that the accumulation of oxidative damage to mitochondria leads to mitochondrial dysfunction and tissue degeneration with age.

The mitochondrial theory of ageing proposes that the accumulation of oxidative damage to mitochondria leads to mitochondrial dysfunction and tissue degeneration with age. However, no consensus has emerged regarding the effects of ageing on mitochondrial function, particularly for mitochondrial coupling (P/O). One of the main barriers to a better understanding of the effects of ageing on coupling has been the lack of in vivo approaches to measure P/O. We use optical and magnetic resonance spectroscopy to independently quantify mitochondrial ATP synthesis and O2 uptake to determine in vivo P/O. Resting ATP demand (equal to ATP synthesis) was lower in the skeletal muscle of 30-month-old C57Bl/6 mice compared to 7-month-old controls (21.9 ± 1.5 versus 13.6 ± 1.7 nmol ATP (g tissue)-1 s-1, P= 0.01). In contrast, there was no difference in the resting rates of O2 uptake between the groups (5.4 ± 0.6 versus 8.4 ± 1.6 nmol O2 (g tissue)-1 s-1). These results indicate a nearly 50% reduction in the mitochondrial P/O in the aged animals (2.05 ± 0.07 versus 1.05 ± 0.36, P= 0.02). The higher resting ADP (30.8 ± 6.8 versus 58.0 ± 9.5 μmol g-1, P= 0.05) and decreased energy charge (ATP/ADP) (274 ± 70 versus 84 ± 16, P= 0.03) in the aged mice is consistent with an impairment of oxidative ATP synthesis. Despite the reduced P/O, uncoupling protein 3 protein levels were not different in the muscles of the two groups. These results demonstrate reduced mitochondrial coupling in aged skeletal muscle that alters cellular metabolism and energetics.

Read Full Story

WorldHealth Videos